The following article was sourced from a Wikipedia page at the following address: http://en.wikipedia.org/wiki/Hand_washing HAND WASHING
Hand washing or hand hygiene is the act of cleaning one's hands with or without the use of water or another liquid, or with the use of soap for the purpose of removing soil, dirt, and/or microorganisms. Medical hand hygiene pertains to the hygiene practices related to the administration of medicine and medical care that prevents or minimizes disease and the spreading of disease. The main medical purpose of washing hands is to cleanse the hands of pathogens (including bacteria or viruses) and chemicals which can cause personal harm or disease. This is especially important for people who handle food or work in the medical field, but it is also an important practice for the general public. People can become infected with respiratory illnesses such as influenza or the common cold, for example, if they don't wash their hands before touching their eyes, nose, or mouth. Indeed, the Centres for Disease Control and Prevention (CDC) has stated: "It is well documented that one of the most important measures for preventing the spread of pathogens is effective hand washing." As a general rule, handwashing protects people poorly or not at all from droplet- and airborne diseases, such as measles, chickenpox, influenza, and tuberculosis. It protects best against diseases transmitted through faecal-oral routes (such as many forms of gastroenteritis) and direct physical contact (such as impetigo). Symbolic hand washing, using water only to wash hands, is a part of ritual handwashing featured in many religions, including Bahá'í Faith, Hinduism, and tevilah and netilat yadayim in Judaism. Similar to these are the practices of Lavabo in Christianity, Wudu in Islam and Misogi in Shintō. SUBSTANCES USED
Soap and detergents
Water temperature
Solid soap
Antibacterial soap A comprehensive analysis from the University of Oregon School of Public Health indicated that plain soaps are as effective as consumer-grade anti-bacterial soaps containing triclosan in preventing illness and removing bacteria from the hands.
Hand antiseptic Hand sanitizers containing a minimum of 60 to 95% alcohol are efficient germ killers. Alcohol rub sanitizers kill bacteria, multi-drug resistant bacteria (MRSA and VRE), tuberculosis, and some viruses (including HIV, herpes, RSV, rhinovirus, vaccinia, influenza, and hepatitis) and fungi. Alcohol rub sanitizers containing 70% alcohol kill 99.97% (3.5 Log reduction, similar to 35 Decibel reduction) of the bacteria on hands 30 seconds after application and 99.99% to 99.999% (4-5 log reduction) of the bacteria on hands 1 minute after application. Hand sanitizers are most effective against bacteria and less effective against some viruses. Alcohol-based hand sanitizers are almost entirely ineffective against norovirus or Norwalk type viruses, the most common cause of contagious gastroenteritis. The CDC recommends hand washing over hand sanitizer rubs, particularly when hands are visibly dirty. The increasing use of these agents is based on their ease of use and rapid killing activity against micro-organisms; however, they should not serve as a replacement for proper hand washing unless soap and water are unavailable. Frequent use of alcohol-based hand sanitizers can cause dry skin unless emollients and/or skin moisturizers are added to the formula. The drying effect of alcohol can be reduced or eliminated by adding glycerin and/or other emollients to the formula. In clinical trials, alcohol-based hand sanitizers containing emollients caused substantially less skin irritation and dryness than soaps or antimicrobial detergents. Allergic contact dermatitis, contact urticaria syndrome or hypersensitivity to alcohol or additives present in alcohol hand rubs rarely occur. The lower tendency to induce irritant contact dermatitis became an attraction as compared to soap and water hand washing. Despite their effectiveness, non-water agents do not cleanse the hands of organic material, but simply disinfect them. It is for this reason that hand sanitizers are not as effective as soap and water at preventing the spread of many pathogens, since the pathogens still remain on the hands. Alcohol-free hand sanitizer efficacy is heavily dependent on the ingredients and formulation, and historically has significantly under-performed alcohol and alcohol rubs. More recently, formulations that use benzalkonium chloride have been shown to have persistent and cumulative antimicrobial activity after application, unlike alcohol, which has been shown to decrease in efficacy after repeated use, probably due to progressive adverse skin reactions.
Ash or mud TECHNIQUES
Soap and water First one should rinse hands with warm water, keeping hands below wrists and forearms, to prevent contaminated water from moving from the hands to the wrists and arms. The warm water helps to open pores, which helps with the removal of microorganisms, without removing skin oils. One should use five millilitres of liquid soap, to completely cover the hands, and rub wet, soapy hands together, outside the running water, for at least 20 seconds. The most commonly missed areas are the thumb, the wrist, the areas between the fingers, and under fingernails. Artificial nails and chipped nail polish harbor microorganisms. Then one should rinse thoroughly, from the wrist to the fingertips to ensure that any microorganisms fall off the skin rather than onto skin. One should use a paper towel to turn off the water. Dry hands and arms with a clean towel, disposable or not, and use a paper towel to open the door. Moisturizing lotion is often recommended to keep the hands from drying out; Dry skin can lead to skin damage which can increase the risk for the transmission of infection. Various low-cost options can be made to facilitate handwashing where tap-water and/or soap is not available e.g. pouring water from a hanging a jerrycan or gourd with suitable holes and/or using ash if needed in developing countries.
Hand antiseptics
Drying In 2008, a study was conducted by the University of Westminster, London, and sponsored by the paper-towel industry the European Tissue Symposium, to compare the levels of hygiene offered by paper towels, warm-air hand dryers and the more modern jet-air hand dryers. The key findings were:
The scientists also carried out tests to establish whether there was the potential for cross contamination of other washroom users and the washroom environment as a result of each type of drying method. They found that:
In 2005, in a study conducted by TUV Produkt und Umwelt, different hand drying methods were evaluated. The following changes in the bacterial count after drying the hands were observed:
provides a directory of case studies on hand dryers vs. paper towels provided by major hand dryer manufacturers such as Excel Dryer. MEDICAL USE
Medical hand-washing became mandatory long after Hungarian physician Ignaz Semmelweis discovered its effectiveness in preventing disease in a hospital environment. There are electronic devices that provide feedback to remind hospital staff to wash their hands when they forget. One study has found decreased infection rates with their use.
Method The purpose of hand-washing in the health-care setting is to remove pathogenic microorganisms ("germs") and avoid transmitting them. The New England Journal of Medicine reports that a lack of hand-washing remains at unacceptable levels in most medical environments, with large numbers of doctors and nurses routinely forgetting to wash their hands before touching patients. One study showed that proper hand-washing and other simple procedures can decrease the rate of catheter-related bloodstream infections by 66 percent. The World Health Organization has published a sheet demonstrating standard hand-washing and hand-rubbing in health-care sectors. The draft guidance of hand hygiene by the organization can also be found at its website for public comment. A relevant review was conducted by Whitby et al. Commercial devices can measure and validate hand hygiene, if demonstration of regulatory compliance is required. The World Health Organization has "Five Moments" for washing hands
The addition of antiseptic chemicals to soap ("medicated" or "antimicrobial" soaps) confers killing action to a hand-washing agent. Such killing action may be desired prior to performing surgery or in settings in which antibiotic-resistant organisms are highly prevalent. To 'scrub' one's hands for a surgical operation, it is necessary to have a tap that can be turned on and off without touching it with the hands, some chlorhexidine or iodine wash, sterile towels for drying the hands after washing, and a sterile brush for scrubbing and another sterile instrument for cleaning under the fingernails. All jewellery should be removed. This procedure requires washing the hands and forearms up to the elbow, usually 2–6 minutes. Long scrub-times (10 minutes) are not necessary. When rinsing, water on the forearms must be prevented from running back to the hands. After hand-washing is completed, the hands are dried with a sterile cloth and a surgical gown is donned.
Effectiveness For control of staphylococcal infections in hospitals, it has been found that the greatest benefit from hand-cleansing came from the first 20% of washing, and that very little additional benefit was gained when hand cleansing frequency was increased beyond 35%. Washing with plain soap results in more than triple the rate of bacterial infectious disease transmitted to food as compared to washing with antibacterial soap. Comparing hand-rubbing with alcohol-based solution with handwashing with antibacterial soap for a median time of 30 seconds each showed that the alcohol hand-rubbing reduced bacterial contamination 26% more than the antibacterial soap. But soap and water is more effective than alcohol-based hand rubs for reducing H1N1 influenza A virus and Clostridium difficile spores from hands. HAND WASHING WITH WIPES Hand washing using hand sanitizing wipes is also recommended by CDC as a convenient alternative during traveling in the absence of soap and water in certain health care settings. RELIGION In symbolic hand washing using water only to wash hands is a part of ritual handwashing as a feature of many religions, including Bahá'í Faith, Hinduism and tevilah and netilat yadayim in Judaism (which is requirement for a meal, and upon exiting a bathroom). Similar to these are the practices of Lavabo in Christianity, Wudu in Islam and Misogi in Shintō.
SOCIETY AND CULTURE The phrase "washing one's hands of" something, means declaring one's unwillingness to take responsibility for the thing or share complicity in it. In the New Testament book of Matthew, verse 27:24 gives an account of Pontius Pilate washing his hands of the decision to crucify Jesus: "When Pilate saw that he could prevail nothing, but that rather a tumult was made, he took water, and washed his hands before the multitude, saying, 'I am innocent of the blood of this just person: see ye to it'." Also see Psalm 26:6. In Shakespeare's Macbeth, Lady Macbeth begins to compulsively wash her hands in an attempt to cleanse an imagined stain, representing her guilty conscience regarding crimes she had committed and induced her husband to commit. It has also been found that people, after having recalled or contemplated unethical acts, tend to wash hands more often than others, and tend to value hand washing equipment more. Furthermore, those who are allowed to wash their hands after such a contemplation are less likely to engage in other "cleansing" compensatory actions, such as volunteering. Excessive hand washing is commonly seen as a symptom of obsessive-compulsive disorder (OCD). PROS AND CONS Pros
Cons
To read more about hand washing, please click on the following link: http://en.wikipedia.org/wiki/Hand_washing |
|||||||
Wikipedia: | http://en.wikipedia.org/wiki/Hand_washing |