The following article was sourced from a Wikipedia page at the following address: http://en.wikipedia.org/wiki/Mouthwash MOUTHWASH Mouthwash, mouth rinse, oral rinse or mouth bath, is a liquid which is held in the mouth passively or swilled around the mouth by contraction of the perioral muscles and/or movement of the head, and may be gargled, where the head is tilted back and the liquid bubbled at the back of the mouth. Usually mouthwashes are an antiseptic solution intended to reduce the microbial load in the oral cavity, although other mouthwashes might be given for other reasons such as for their analgesic, anti-inflammatory or anti-fungal action. The most common use of mouthwash is commercial antiseptics which are used at home as part of an oral hygiene routine. Some manufacturers of mouthwash state that antiseptic and anti-plaque mouth rinse kill the bacterial plaque which causes cavities, gingivitis, and bad breath. Anti-cavity mouth rinse uses fluoride to protect against tooth decay. It is, however, generally agreed that the use of mouthwash does not eliminate the need for both brushing and flossing. The American Dental Association asserts that regular brushing and proper flossing are enough in most cases, although they approve many mouthwashes that do not contain ethanol (in addition to regular dental check-ups). For many patients, however, the mechanical methods could be tedious and time-consuming and additionally some local conditions may render them especially difficult. Chemotherapeutic agents, including mouthrinses, could have a key role as adjuncts to daily home care, preventing and controlling supragingival plaque, gingivitis and oral malodour. Another common use of mouthwash is prior to and after oral surgery procedures such as tooth extraction. The number of mouthwash variants in the U.S. has grown from 15 (1970) to 66 (1998) to 113 (2012). USE Common use involves rinsing the mouth with about 20ml (2/3 fl oz) of mouthwash. The wash is typically swished or gargled for about half a minute and then spit out. Most companies suggest not drinking water immediately after using mouthwash. In some brands, the expectorate is stained, so that one can see the bacteria and debris. Mouthwash should not be used immediately after brushing the teeth so as not to wash away the beneficial fluoride residue left from the toothpaste. Similarly, the mouth should not be rinsed out with water after brushing. Patients were told to "spit don't rinse" after toothbrushing as part of an National Health Service campaign in the UK. Gargling is where the head is tilted back, allowing the mouthwash to sit in the back of the mouth while exhaling, causing the liquid to bubble. Gargling is practiced in Japan for perceived prevention of viral infection. One commonly used way is with infusions or tea. In some cultures, gargling is usually done in private, typically in a bathroom at a sink so the liquid can be rinsed away. TYPICAL FORMULATION OF COMMERCIAL MOUTHWASHES Each commercial brand of mouthwash has different ingredients. The active ingredients are usually alcohol, chlorhexidine gluconate, cetylpyridinium chloride hexetidine, benzoic acid (acts as a buffer), methyl salicylate, triclosan, benzalkonium chloride, methylparaben, hydrogen peroxide, domiphen bromide and sometimes fluoride, enzymes and calcium. They can also include essential oil constituents that have some antibacterial properties, like phenol, thymol, eugenol, eucalyptol or menthol. Ingredients also include water, sweeteners such as sorbitol, sucralose, sodium saccharin, and xylitol (which doubles as a bacterial inhibitor). Commercial mouthwashes usually contain a preservative such as sodium benzoate to preserve freshness once the container has been opened. Many newer brands are alcohol-free and contain odour-elimination agents such as oxidizers, as well as odour-preventing agents such as zinc ion to keep future bad breath from developing. Alternative mouthwash ingredients might include persica or alum. Minor and transient side effects of commercial mouthwashes are very common, such as taste disturbance, tooth staining, sensation of a dry mouth, etc. Alcohol-containing mouthwashes may make dry mouth and halitosis worse since it dries out the mouth. Soreness, ulceration and redness may sometimes occur (e.g. aphthous stomatitis, allergic contact stomatitis) if the person is allergic or sensitive to mouthwash ingredients such as preservatives, colouring, flavours and fragrances. Such effects might be reduced or eliminated by diluting the mouthwash with water, using a different mouthwash (e.g. salt water), or foregoing mouthwash entirely. CUSTOM FORMULATIONS ("MAGIC MOUTHWASH") A "magic mouthwash" (or "magic swizzle"), refers to a non-standardized mixture of ingredients prescribed for a specific purpose, e.g. oral surgery, or to treat the pain associated with mucositis caused by radiation therapy or chemotherapy. It is also prescribed for aphthous ulcers, other oral ulcers, and other mouth pain. Variations are common, and some are done with over-the-counter products. Magic mouthwashes are intended to combine ingredients to treat a variety of oral conditions. Magic mouthwashes are typically compounded in a pharmacy from a doctor's prescription. Common ingredients include: Diphenhydramine (antihistamine), Glucocorticoids (anti-inflammatory), Lidocaine/Xylocaine (local anesthetic), Maalox (antacid), Nystatin (antifungal for oral candidiasis), Sucralfate (coating agent), Tetracycline or Erythromycin (antibiotics). Despite a lack of evidence that magic mouthwashes are effective in decreasing the pain of oral lesions, many patients and prescribers continue to use them. There has been only one controlled study to evaluate the efficacy of magic mouthwash; it shows no difference in efficacy among the most common formulation and other agents such as chlorhexidine and a saline/baking soda solution. Current guidelines suggest that saline solution is just as effective as magic mouthwash in pain relief or shortening of healing time of oral mucositis from cancer therapies. Because magic mouthwash has no standard formulation, its use involves concerns about patient safety. It is important that the prescriber and pharmacist are in specific agreement about exactly what is being prescribed, so as to minimize the potential for drug interaction and the possibility of drug allergy. SPECIFIC MOUTHWASH INGREDIENTS Alcohol
Sometimes a significant amount of alcohol (up to 27% vol) is added, as a carrier for the flavour, to provide "bite". Because of the alcohol content, it is possible to fail a breathalyzer test after rinsing although breath alcohol levels return to normal after 10 minutes. In addition, alcohol is a drying agent, which encourages bacterial activity in the mouth, releasing more malodorous volatile sulphur compounds. Therefore, alcohol-containing mouthwash may temporarily worsen halitosis in those who already have it, or indeed be the sole cause of halitosis in other individuals. It is theorized that alcohol mouthwashes acts as a carcinogen (cancer-inducing). Generally, there is no scientific consensus about this. One review stated: There is now sufficient evidence to accept the proposition that developing oral cancer is increased or contributed to by the use of alcohol-containing mouthwashes. Whilst many of these products may have been shown to be effective in penetrating oral microbial biofilms in vitro and reducing oral bacterial load, it would be wise to restrict their use to short-term therapeutic situations if needed. Perhaps the use of mouthwashes that do not contain alcohol may be equally effective. Further, mouthrinses should be prescribed by dentists, like any other medication. There may well be a reason for the use of alcohol-containing mouthrinses, but only for a particular situation and for a limited and controlled period of time. As such, patients should be provided with written instructions for mouthwash use, and mouthwash use should be restricted to adults for short durations and specific, clearly defined reasons. It is the opinion of the authors that, in light of the evidence currently available of the association of alcohol-containing mouthwashes with the development of oral cancer, it would be inadvisable for oral healthcare professionals to recommend the long-term use of alcohol-containing mouthwashes. The same researchers also state that the risk of acquiring oral cancer rises almost five times for users of alcohol-containing mouthwash who neither smoke nor drink (with a higher rate of increase for those who do). In addition, the authors highlight side effects from several mainstream mouthwashes that included dental erosion and accidental poisoning of children. The review garnered media attention and conflicting opinions from other researchers. Yinka Ebo of Cancer Research UK disputed the findings, concluding that "there is still not enough evidence to suggest that using mouthwash that contains alcohol will increase the risk of mouth cancer". Studies conducted in 1985, 1995, and 2012 did not support an association between alcohol-containing mouth rinses and oral cancer. Andrew Penman, chief executive of The Cancer Council New South Wales, called for further research on the matter. In a March 2009 brief, the American Dental Association said "the available evidence does not support a connection between oral cancer and alcohol-containing mouthrinse". Many newer brands of mouthwash are alcohol free, not just in response to consumer concerns about oral cancer, but also to cater for religious groups who abstain from alcohol consumption.
Benzydamine (Difflam)
Betamethasone
Cetylpyridinium chloride
Chlorhexidine digluconate Chlorhexidine has good substantivity (the ability of a mouthwash to bind to hard and soft tissues in the mouth). However, chlorhexidine binds to tannins, meaning that prolonged use in persons who consume coffee, tea or red wine is associated with extrinsic staining (i.e. removable staining) of teeth. Chlorhexidine is rarely associated with other issues like overgrowth of enterobacteria in persons with leukemia, desquamation and irritation of oral mucosa, salivary gland pain and swelling, and hypersensitivity reactions including anaphylaxis.
Essential oils
Edible oils Oil pulling has received little study and there is little evidence to support claims made by the technique's advocates. When compared with chlorhexidine in one small study, it was found to be less effective at reducing oral bacterial load, otherwise the health claims of oil pulling have failed scientific verification or have not been investigated. There is a report of lipid pneumonia caused by accidental inhalation of the oil during oil pulling. The mouth is rinsed with approximately one tablespoon of oil for 10–20 minutes then spat out. Sesame oil, coconut oil and ghee are traditionally used, but newer oils such as sunflower oil are also used.
Fluoride
Hydrogen peroxide
Phenol
Providone/iodine
Sanguinarine
Sodium bicarbonate (Baking soda)
Sodium chloride (Salt) Salt water mouth wash is made by dissolving 0.5-1 teaspoon of table salt into a cup of water, which is as hot as possible without causing discomfort in the mouth. Saline has a mechanical cleansing action and an antiseptic action as it is a hypertonic solution in relation to bacteria, which undergo lysis. The heat of the solution produces a therapeutic increase in blood flow (hyperemia) to the surgical site, promoting healing. Hot salt water mouthwashes also encourage the draining of pus from dental abscesses. Conversely, if heat is applied on the side of the face (e.g. hot water bottle) rather than inside the mouth, it may cause a dental abscess to drain extra-orally, which is later associated with an area of fibrosis on the face. Gargling with salt water is said to reduce the symptoms of a sore throat.
Sodium lauryl sulfate
Tetracycline
Tranexamic acid
Triclosan HISTORY The first known references to mouth rinsing is in Ayurveda and Chinese medicine, about 2700 BC, for treatment of gingivitis. Later, in the Greek and Roman periods, mouth rinsing following mechanical cleansing became common among the upper classes, and Hippocrates recommended a mixture of salt, alum, and vinegar. The Jewish Talmud, dating back about 1800 years, suggests a cure for gum ailments containing "dough water" and olive oil. Before Europeans came to the Americas, Native North American and Mesoamerican cultures used mouthwashes, often made from plants such as Coptis trifolia. Indeed Aztec dentistry was more advanced than European dentistry of the age. Peoples of the Americas used salt water mouthwashes for sore throats, and other mouthwashes for problems such as teething and mouth ulcers. Anton van Leeuwenhoek, the famous 17th century microscopist, discovered living organisms (living, because they were motile) in deposits on the teeth (what we now call dental plaque). He also found organisms in water from the canal next to his home in Delft. He experimented with samples by adding vinegar or brandy and found that this resulted in the immediate immobilization or killing of the organisms suspended in water. Next he tried rinsing the mouth of himself and somebody else with a mouthwash containing vinegar or brandy and found that living organisms remained in the dental plaque. He concluded—correctly—that the mouthwash either did not reach, or was not present long enough, to kill the plaque organisms. That remained the state of affairs until the late 1960s when Harald Loe (at the time a professor at the Royal Dental College in Aarhus, Denmark) demonstrated that a chlorhexidine compound could prevent the build-up of dental plaque. The reason for chlorhexidine effectiveness is that it strongly adheres to surfaces in the mouth and thus remains present in effective concentrations for many hours. Since then commercial interest in mouthwashes has been intense and several newer products claim effectiveness in reducing the build-up in dental plaque and the associated severity of gingivitis, in addition to fighting bad breath. Many of these solutions aim to control the Volatile Sulphur Compound (VSC)-creating anaerobic bacteria that live in the mouth and excrete substances that lead to bad breath and unpleasant mouth taste. RESEARCH Research in the field of microbiotas shows that only a limited set of microbes cause tooth decay, with most of the bacteria in the human mouth being harmless. Focused attention on cavity-causing bacteria such as Streptococcus mutans has led research into new mouthwash treatments that prevent these bacteria from initially growing. While current mouthwash treatments must be used with a degree of frequency to prevent this bacteria from regrowing, future treatments could provide a viable long term solution. To read more about mouth wash, please click on the following link: http://en.wikipedia.org/wiki/Mouthwash |
|
Wikipedia: | http://en.wikipedia.org/wiki/Mouthwash |